当a>0时,求证,a+1/a-√(a^2+1/a^2)≤2-√2

来源:学生ag平台怎么代理|优惠帮助网 编辑:ag平台怎么代理|优惠帮 时间:2019/09/25 19:09:04
当a>0时,求证,a+1/a-√(a^2+1/a^2)≤2-√2当a>0时,求证,a+1/a-√(a^2+1/a^2)≤2-√2当a>0时,求证,a+1/a-√(a^2+1/a^2)≤2-√2a^2+

当a>0时,求证,a+1/a-√(a^2+1/a^2)≤2-√2
当a>0时,求证,a+1/a-√(a^2+1/a^2)≤2-√2

当a>0时,求证,a+1/a-√(a^2+1/a^2)≤2-√2
a^2+1/a^2=(a+1/a)^2-2
目标式可变成√[(a+1/a)^2-2]-√2-a-1/a+2
设f(a)=√[(a+1/a)^2-2]-√2-a-1/a+2 (a>0)
因为a+1/a>=2 所以当a+1/a=2时f(a)有最小值0
所以f(a)>=0
移项 √(a^2+1/a^2)-√2≥a+1/a-2
得证.